Cari maklumat di sini

Google
 

Sunday, October 5, 2014

Manfaat Kesihatan Dari Buah Malberi

Nutrien dalam buah malberi mengandungi manfaat untuk kesihatan tubuh. ‎Antaranya:

Anti-oksidan 
Anthocyanin adalah jenis anti-oksidan yang sangat berkesan (juga banyak terdapat dalam beras pulut/ketan hitam). Beberapa kajian sains, juga kajian-kajian yang dibiayai oleh 'National Center for Complementary and Alternative Medicine' dan 'National Cancer Institute' khusus keatas buah malberi, mendapati permakanan malberi (dari anthocyanin) berpotensi sebagai anti-kanser, anti-keradangan, anti penyakit jantung, anti kencing manis, anti-jangkitan penyakit, anti-penuaan dan anti-kemerosotan otak. Ia juga mengutuhkan sistem kekebalan tubuh.

Resveratrol adalah nutrien phyto (juga banyak terdapat dalam anggur) yang berkesan bagi mencegah rebakan kanser. Ia juga didapati melindungi dari strok melalui ubahsuai mekanisma molekeul dalam saluran darah, mengurangkan aktiviti angiotensin (hormon yang menyebabkan penguncupan saluran darah dan menambah tekanan darah tinggi), menambah penghasilan hormon vasodilator (nitric oxide) yang memberi isyarat perhubungan dikalangan sel-sel, dengan demikian mengurangkan kerosakan pada saluran darah. Resveratrol juga berkesan sebagai anti-penuaan.

Lutein, zeaxanthin, ß-carotene dan α-carotene.
Bahan-bahan ini membantu melindungi tubuh dari kerosakan akibat dari radikal bebas, dan dari proses penuaan. Zeaxanthin, sejenis karotenoid, yang diserap oleh retina mata (macula lutea) merupakan anti-oksidan dan melindungi retina dalam proses penapisan cahaya kedalam mata.‎

Peredaran Darah 
Buah malberi membantu mempertingkat pengaliran darah keseluruh tubuh, merendahkan tekanan darah, mengurangkan risiko pembekuan darah dan strok. Demikian menurut satu lapuran dalam "American Journal of Clinical Nutrition, 2008." ‎
Kandungan zat besi yang terdapat didalam buah malberi boleh membantu pesakit anemia.

Perubatan Tradisional 
Perubatan tradisional Cina - buah malberi dianggap sebagai tonik darah, dapat mencuci dan menambah darah, mencuci organ hati dari keracunan, menguat dan menyihatkan ginjal, mempertajam pendengaran dan penglihatan, dan menguatkan seluruh anggota tubuh.
Perubatan tradisional Turki - merawat sembelit, dan jangkitan selsema.
Beberapa negara mempercayai buah malberi berkesan merawat rambut beruban.


Jom Tanam Mulberry !!!
Sumber : http://dharmakesuma.blogspot.com/2014/03/ada-apa-pada-malberimulberry.html

Pangkas Malberi Supaya Pokok Berbuah

Pokok malberi yang biasa di tanam di perkarangan rumah biasanya dari dua variety iaitu yang menghasilkan buah putih dan yang menghasilkan buah merah. Malberi buah putih lazimnya lebih jarang berbuah berbanding dengan malberi buah merah. Malbei ada ditanam secara komersial tetapi bukan untuk buahnya. Ia ditanam untuk daunnya iaitu sebagai makanan ulat sutera.

Saya pernah terbaca khasiat daun malberi yang digunakan sebagai daun teh. Saya tanam malberi untuk buahnya. Pokok ini kurang popular kerana ia memakan masa selama 8 tahun untuk berbuah. Bagaimanapun anda boleh langkau masa tersebut dengan menanam pokok menggunakan keratan batang. Sebenarnya, sebaik sahaja pokok yang anda tanam (melalui keratan batang) dan stabil, anda terus boleh memaksa ia berbuah.
Malberi hanya berbuah pada ranting yang baru tumbuh. Untuk menghasilkan bunga dan buah, ikut petua ini.
Kira-kira dua minggu sebelum kerat bantang malberi, tambahkan baja organik ke dalam tanah. Anda boleh gunakan kepala ikan bilis yang telah rosak, baja tinja haiwan ternakan atau kompos.

Apabila telah sedia, jalankan langkah berikut di sebelah petang. Ini untuk mengelakkan terik matahari selepas ranting dikerat.

Kerat ranting utama hingga tinggi kira-kira paras pinggang menggunakan gunting kebun yang tajam. Biarkan daun pada pangkal ranting sahaja. Jangan buang tunas pada pangkal daun tetapi petik daun untuk mengelakkan dari berlaku kehilangan air yang berlebihan. Siram pokok dengan air yang banyak tetapi jangan sampai air bertakung.

Buang daun pada ranting yang telah dikerat dan cucuk ke dalam tanah untuk disemai.



Ranting selepas seminggu dikerat. Perhatikan rang baru tumbuh pada ranting tersebut.

Ranting yang telah dikerat akan menghasilkan tunas baru dalam masa seminggu. Ranting baru akan mengandungi bunga malberi.



Ranting yang baru tumbuh mengandungi bunga malberi, iaitu putik-putik buah bewarna hijau.





Bunga malberi mempunyai bentuk buah dengan urat-urat stigma terjulur keluar.





Bunga hanya tumbuh pada ranting yang baru.

Mudah bukan?

Ada Apa Pada Malberi/Mulberry ?





Malberi (Mulberry), sejenis pohon yang kini kerap ditemui tumbuh dikampung-kampung atau disudut halaman rumah sebagai tanaman hiasan di Malaysia.

Nama botani Morus, dari genus pepohonan Moraceae.Jenis pohon merendang dan berbunga. Terdiri lebih dari 150 spesis pohon morus yang dikenali didunia ini. Banyak spesis 'hybrid' juga turut muncul. Namun, sejauh ini hanya 10–16 spesis ‎yang diterima oleh jabatan botani sebagai 'mulberry.' ‎



Pohon ini tumbuh bercambah dinegara-negara berbagai iklim; Asia, Afrika, Eropah, Amerika - Albania, Algeria, Armenia, Azerbaijan, Afghanistan, Egypt, Ethiopia, Georgia, Greece, India, Iraq, Iran, Jordan, ‎Kenya, Lebanon, Libya, Pakistan, Syria, Sudan, Turkey, Uganda, Uzbekistan.

Spesis morus australis poir (Malberi China) lebih banyak tumbuh bercambah diAsia Tenggara, termasuk Malaysia.‎Buah morus warna-warni mengikut perbezaan spesisnya; seperti hitam, biru, jingga, merah, putih dll. Buah-buahnya kecil berjambak, berumpun, berkelompok.

Buah malberi boleh dimakan mentah atau diminum dalam bentuk jus. Rasanya masam-masam manis, malberi hitam lebih manis apabila ranum. Dibeberapa negara, ia sering dibuat kueh, pie, tart, muffin, kek, kordial, dan jem. Juga digunakan sebagai bahan dalam ais krim, yogurt dsbnya.

Pohon malberi boleh tumbuh membesar. Lebih cepat membesar sewaktu muda. Ketinggian boleh mencecah antara 10–15 meter (33–‎‎49 kaki). ‎

Daun malberi, terutama malberi putih (Bombyx mori), disaji sebagai makanan utama pada ulat sutera, ‎‎“pupa/cocoon” yang menghasilkan sutera. ‎Daun malberi mempunyai nilai komersial yang tinggi di negara China, pengeluar sutera terbesar didunia.



Nutrien Buah Malberi


Buah malberi juga mengandungi serat makanan. Berjus, dan berkalori rendah; 1 cawan malberi membekal kira-kira 60 kalori sahaja.‎

Buah malberi mengandungi nutrien penting yang menyihatkan tubuh. Ia mengandungi protein, ‎karbohidrat, juga vitamin-vitamin seperti
vitamin B-kompleks, vitamin A, C, E dan K.  

Vitamin C (36.4 mcg/100g, kira-kira 61% RDI), adalah anti-‎oksidan yang berkesan. Permakanan yang tinggi vitamin C boleh membantu tubuh melawan jangkitan kuman/mikroorganisma, mencegah masalah keradangan dan menyirna radikal bebas (perosak organ tubuh).‎

Buah malberi juga merupakan sumber beberapa zat galian/gizi seperti sodium, potassium, kalsium, tembaga, besi, ‎magnesium, selenium dan zinc. ‎ 

Potassium adalah komponen penting kepada sel-sel dan cecair tubuh yang bertindak membantu rentak denyut nadi dan tekanan darah dalam tubuh.

Manganese merupakan faktor gandingan yang perlu bagi mengaktifkan tindak-tanduk aneka jenis enzim untuk berbagai urusan metabolisma dalam tubuh. Juga sebagai faktor gandingan kepada enzim anti-oksidan yang sangat berkuasa, iaitu superoxide dismutase.

Tembaga merupakan komponen kepada berbagai jenis enzim (enzim adalah molekeul protein yang ‎melaksanakan tindak-balas kimia diseluruh tubuh) yang masing-masing mempunyai fungsi tersendiri. 90% tembaga berada dalam darah merupakan komponen kepada protein 'ceruloplasmin', iaitu protein pembawa tembaga ke tisu-tisu, dan sebagai enzim yang menggalak oksidasi zat-zat gizi.

Besi merupakan ‎sebahagian dari 'hemoglobin' yang berada didalam sel-sel darah merah, yang akan menentukan jumlah oxygen dalam darah yang dibawa keseluruh tubuh.‎ Buah malberi merupakan sumber zat besi yang sangat baik; 1.85 mg/100 g (kira-kira 23% RDI).

Anthocyanin dan Resveratrol. Buah malberi mengandungi ‎‎'anthocyanin' dan 'resveratrol', jenis zat kimia phyto dari kalangan “phenolic flavonoid” yang merupakan anti-oksidan yang sangat berkuasa. Anthocyanin juga merupakan pigmen yang menjadi pewarna alami kepada buah-buahan atau bahan makanan; warna seperti oren, merah, jingga, hitam dan biru. Analisa makmal mendapati malberi China mengandungi jumlah anthocyanin yang tinggi, antara 148 mg - 2725 mg bagi setiap 1 liter jus malberi.

Lutein, zeaxanthin, ß-carotene dan α-carotene.  Disamping itu, buah malberi mengandungi kandungan sederhana “phenolic flavonoid” anti-oksidan yang lain, seperti lutein, zeaxanthin, ß-carotene dan α-carotene.



Saturday, October 4, 2014

Morus (plant)


From Wikipedia, the free encyclopedia
"Mulberry" redirects here. For other uses, see Mulberry (disambiguation).
Mulberry
Morus alba FrJPG.jpg
Morus nigra
Scientific classification
Kingdom:Plantae
(unranked):Angiosperms
(unranked):Eudicots
(unranked):Rosids
Order:Rosales
Family:Moraceae
Tribe:Moreae[1]
Genus:Morus
L.
Species
See text.
Morus, a genus of flowering plants in the family Moraceae, comprises 10–16 species of deciduous trees commonly known as mulberries growing wild and under cultivation in many temperate world regions.[2]
The closely related genus Broussonetia is also commonly known as mulberry, notably the Paper MulberryBroussonetia papyrifera. Mulberries are swift-growing when young, but soon become slow-growing and rarely exceed 10–15 m (33–49 ft) tall. The leaves are alternately arranged, simple, often lobed, more often lobed on juvenile shoots than on mature trees, and serrated on the margin.
The trees can be monoecious or dioecious.[3][4]
The mulberry fruit is a multiple fruit, 2–3 cm (0.79–1.18 in) long. Immature fruits are white, green, or pale yellow. In most species, the fruits turn pink and then red while ripening, then dark purple or black, and have a sweet flavor when fully ripe. The fruits of the white-fruited cultivar are white when ripe; the fruit in this cultivar is also sweet but has a very mild flavor compared with the darker variety.

Species[edit]

Long Mulberry
Unripe white mulberries
The taxonomy of Morus is complex and disputed. Over 150 species names have been published, and although differing sources may cite different selections of accepted names, only 10–16 are generally cited as being accepted by the vast majority of botanical authorities. Morus classification is even further complicated by widespreadhybridisation, wherein the hybrids are fertile.
The following species are generally accepted:
The following, all from eastern and southern Asia, are additionally accepted by one or more taxonomic lists or studies; synonymy, as given by other lists or studies, is indicated in square brackets:
  • Morus atropurpurea [M. alba var. alba]
  • Morus bombycis [M. australis]
  • Morus cathayana
  • Morus indica [M. alba]
  • Morus japonica [M. alba]
  • Morus kagayamae [M. australis]
  • Morus laevigata [M. alba var.laevigata; M. macroura]
  • Morus latifolia [M. alba]
  • Morus liboensis
  • Morus macroura [M. alba var.laevigata]
  • Morus mongolica [M. alba var.mongolica]
  • Morus multicaulis [M. alba var.multicaulis]
  • Morus notabilis
  • Morus rotundiloba
  • Morus serrata [M. alba var. serrata], Himalayan mulberry
  • Morus tillaefolia
  • Morus trilobata [M. australis var. trilobata]
  • Morus wittiorum

Uses and cultivation[edit]

Mulberry fruit in Libya
The ripe fruit is edible and is widely used in pies, tarts, wines, cordials and tea. The fruit of the black mulberry, native to southwest Asia, and the red mulberry, native to eastern North America, have the strongest flavor, which has been likened to 'fireworks in the mouth'.[5]
The fruit of the white mulberry, an east Asian species which is extensively naturalized in urban regions of eastern North America, has a different flavor, sometimes characterized as refreshing and a little tart, with a bit of gumminess to it and a hint of vanilla.[6][7] In North America the white mulberry is considered an invasive exotic and has taken over extensive tracts from native plant species, including the red mulberry.[8] The mature plant contains significant amounts of resveratrol, particularly in stem bark.[9] The fruit and leaves are sold in various forms as nutritional supplements. Unripe fruit and green parts of the plant have a white sap that may be toxic, stimulating, or mildly hallucinogenic.[10]
Black, red, and white mulberry are widespread in southern Europe, the Middle Eastnorthern Africa and Indian Subcontinentwhere the tree and the fruit have names under regional dialectsJams and sherbets are often made from the fruit in this region. Black mulberry was imported to Britain in the 17th century in the hope that it would be useful in the cultivation of silkworms. It was much used in folk medicine, especially in the treatment of ringworm. Mulberries are also widespread inGreece, particularly in the Peloponnese, which in the Middle Ages was known as Morea (GreekΜωριάςMorias), deriving from the Greek word for the tree (GreekΜουριάΜouria).
Mulberries can be grown from seed, and this is often advised as seedling-grown trees are generally of better shape and health, but they are most often planted from large cuttings which root readily. The mulberry plants which are allowed to grow tall with a crown height of 5–6 feet from ground level and a stem girth of 4–5 inches or more is called tree mulberry. They are specially raised with the help of well-grown saplings 8–10 months old of any of the varieties recommended for rain-fed areas like S-13 (for red loamy soil) or S-34 (black cotton soil) which are tolerant to drought or soil-moisture stress conditions. Usually, the plantation is raised and in block formation with a spacing of 6 feet x 6 feet, or 8 feet x 8 feet, as plant to plant and row to row distance. The plants are usually pruned once a year during the monsoon season (July – August) to a height of 5–6 feet and allowed to grow with a maximum of 8–10 shoots at the crown. The leaves are harvested 3–4 times a year by a leaf picking method[clarification needed] under rain-fed or semi-arid conditions, depending on the monsoon.
The tree branches pruned during the fall season (after the leaves have fallen) are cut and used to make durable baskets supporting agriculture and animal husbandry.
Some North American cities have banned the planting of mulberries because of the large amounts of pollen they produce, posing a potential health hazard for some pollen allergy sufferers.[11] In actuality, it is only the male mulberry trees that produce pollen; this light-weight pollen can be inhaled deeply into the lungs, sometimes triggering asthma.[12][13] Conversely, female mulberry trees produce all-female flowers, which draw pollen and dust from the air. Because of this pollen-absorbing feature, all-female mulberry trees have an OPALS allergy scale rating of just 1, and are considered "allergy-free".[12]
Fortunately, mulberry tree scion wood can easily be grafted onto other mulberry trees during the winter, when the tree is dormant. One common scenario is converting a problematic male mulberry tree to an allergy-free female tree, by grafting all-female mulberry tree scions to a male mulberry that has been pruned back hard.[14] However, any new growth from below the graft(s) must be removed, as they would be from the original male mulberry tree.[15]

Silk industry[edit]

A silkworm, Bombyx mori, feeding on a mulberry tree
Mulberry leaves, particularly those of the white mulberry, are ecologically important as the sole food source of the silkworm (Bombyx mori, named after the mulberry genus Morus), the pupa/cocoon of which is used to make silk.[16][17] OtherLepidoptera larvae—which include the common emerald, the lime hawk-moth, and the sycamore moth—also sometimes eat the plant.

Pigments[edit]

Mulberry fruit color derives from anthocyanins which are under basic research for mechanisms of various diseases.[18][19] Anthocyanins are responsible for the attractive colors of fresh plant foods, including orange, red, purple, black, and blue. These colors are water-soluble and easily extractable, yielding natural food colorants. Due to a growing demand for natural food colorants, their significance in the food industry is increasing.
A cheap and industrially feasible method has been developed to extract anthocyanins from mulberry fruit which could be used as a fabric tanning agent or food colorant of high color value (above 100). Scientists found that, of thirty-one Chinese mulberry cultivars tested, the total anthocyanin yield varied from 148 mg to 2725 mg per liter of fruit juice.[20] It was also found that all the sugars, acids, and vitamins of the fruit remained intact in the residual juice after removal of the anthocyanins, so the juice could be used to produce products such as juice, wine, and sauce.
Anthocyanin content depends on climate and area of cultivation and is particularly high in sunny climates.[21] This finding holds promise for tropical countries that grow mulberry trees as part of the practice of sericulture to profit from industrial anthocyanin production through the recovery of anthocyanins from the mulberry fruit.
This offers a challenging task to the mulberry germplasm resources for
  • exploration and collection of fruit yielding mulberry species;
  • their characterization, cataloging, and evaluation for anthocyanin content by using traditional as well as modern means and biotechnology tools;
  • developing an information system about these cultivars or varieties;
  • training and global coordination of genetic stocks;
  • evolving suitable breeding strategies to improve the anthocyanin content in potential breeds by collaboration with various research stations in the field of sericulture, plant genetics, and breeding, biotechnology and pharmacology.

In popular culture[edit]

A Mulberry tree in England
The nursery rhyme Here We Go Round the Mulberry Bush uses the tree in the refrain, as do some contemporary American versions of the nursery rhyme Pop Goes the Weasel. Vincent van Gogh featured the mulberry tree in some of his paintings, notably "Mulberry Tree."[22]
The Roman mythological tale of Pyramus and Thisbe provides a story of the mulberry fruit's color. According to the tale, after the two lovers die tragically, the gods listen to Thisbe's lament and forever change the color of the mulberry fruits into their red stained color to honor the forbidden love.

Gallery[edit]

Nutritional evaluation of mulberry leaves as feeds for ruminants

J Yao, B Yan, X Q Wang and J X Liu

College of Animal Sciences, Zhejiang University (Huajiachi Campus),
Hangzhou 310029, P.R.China
junyao@mail.hz.zj.cn or jxliu@email.com

Abstract

The leaves from four mulberry (Morus alba) strains cultivated in China were sampled at three stages of maturity in spring and autumn, respectively. Their nutritional value was evaluated in terms of chemical composition, amino acid (AA) content and in vitro gas production (GP). Excepting one strain which was slightly inferior to other strains, there was no great difference in chemical composition between different strains regardless of season. There was little seasonal difference in content of crude protein (CP) and true protein (TP) of mulberry leaves. Average CP contents were 21.1 and 20.9 (% in DM), and TP accounted for 88.2 and 85.8% of CP in spring and autumn, respectively. Content of neutral detergent fiber (NDF) was higher in autumn (41.1%) than in spring (38.8%). Except for a few amino acids, no difference (P>0.05) was observed in AA contents among the four strains. Total and essential amino acids were 70.0 to 81.6 and 24.7 to 31.6% of the CP for spring leaves, and 75.6 to 78.0 and 29.0 to 30.8% of the CP for autumn leaves, respectively. Potential GP and organic matter digestibility estimated from GP were 43.3 to 52.2 ml and 65.6 to 71.3% for spring leaves, and  35.4 to 38.7 ml and 56.3 to 61.4% for autumn leaves, respectively, indicating that the nutritional value of spring leaves is superior to that in autumn. Chemical composition of mulberry leaves was influenced by stage of maturuty, though the extent of the effect was different between spring and autumn leaves. For spring leaves, content of CP and TP was superior at mid-stage to that  in early or late stage, whereas the CP content in autumn decreased significantly (P<0 .05="" acids="" amino="" and="" content="" differences="" essential="" increase="" increased="" individual="" maturity.="" maturity="" ndf="" non-essential="" not="" of="" regardless="" season.="" significant="" stage="" tended="" the="" though="" to="" total="" were="" with="">0.05). Parameters of in vitro GP showed a similar trend to the CP content, suggesting that the nutritional value of mulberry leaves was higher at mid-stage in spring and at early stage in autumn. From these results, it is inferred that mulberry leaves, with their high protein and low fibre content and their high digestibility, may be used as supplementary protein source for ruminants.
Key words: mulberry leaves, chemical composition, amino acids, in vitro gas production

Introduction

Great progress has been made in China in utilization of crop residues to develop ruminant production during the last decade (Guo and Yang 1996; Dolberg and Finlayson 1995). However, a large amount of roughage remains underutilized and current efforts are still directed at increasing straw utilization in animal feeding. Through the projects supported by FAO and the Government of China,  the use of rice straw as basal diet for fattening lambs and steers has been promoted in our region, while generally farmer practice is still the use of high levels of concentrate mixture including cereal grains and oilseed meals. Therefore it is important to find adequate types and levels of supplements to overcome the dependence on conventional feeds much of which are imported (Preston 1995; Liu 1995).
Due to their high nutritive value, and positive effects on rumen function, microbial yields and body metabolism, tree foliage is being increasing recognized as a potentially high quality feed resource for ruminants, particularly to supply crude protein (Leng 1997). The developing countries such as China have little land for ruminant production per se, as crop production for human consumption is given the first priority. It is inconceivable that large tracts of land could be set aside for fodder tree planting. The animal production system should be integrated with the whole agricultural system.
Silkworm cultivation on the leaves of the mulberry tree (Morus alba) is an important farming activity in southeast China, with over 106 and 105 ha planted in China and Zhejiang Province, respectively. The biomass yield of fresh leaves is of the order of 15 to 22 tonnes/ha/year. Silkworm production is not always profitable, as it is dependent upon the price of silk and world market trends in this commodity. Alternative ways of using the foliage of mulberry tree would be welcomed by farmers for the occasions when income from silkworm is low. The leaves of mulberry are relished by sheep and goats and have high nutritive value with protein content at about 20 % of dry matter (FAO 1998). They could be appropriate protein supplements for sheep fed a basal diet of ammoniated rice straw as partial or total replacement for oilseed meals, which could then be used in the diets for mono-gastric animals. However, little information is available on the nutritional values of mulberry leaves as animal feed.
The present study was conducted to evaluate the nutritive value of mulberry leaves, which were sampled from different strains at different stages of maturity. Chemical composition and amino acid contents were analyzed, and in vitro gas production (GP) was measured, as indices of nutritional value.

Materials and Methods

Sampling of mulberry leaves
Mulberry strains used included Tuantou Heyebai (TH), Husang No.9 (HS), Tongxiangqing (TX) and Nongsang No.8 (NS), which are the main mulberry strains in China. Mulberry leaves were sampled at the Experimental Farm, Zhejiang Agricultural University. Samples of mulberry leaves were taken in two seasons: spring and autumn. Mulberry leaves were sampled three times in every season: 28 April, 14 May and 29 May 1998 in spring, and 28 August, 30 September and 30 October in autumn, respectively. The different sampling interval in two seasons was due to the availability of the mulberry leaves, which is dependent on the silkworm cultivation activity. The sampling at different times within one season was conducted in one mulberry tree of each strain. Samples taken in the morning were weighed immediately, and oven-dried at 65ºC. The sub-samples were ground to pass a sieve size of 2mm for chemical analysis and further GP test.

Chemical analysis

All samples were analysed for dry matter (DM). Content of crude protein (CP) was determined using the macro-Kjeldahl method (AOAC 1990). True protein (TP) was analysed according to the method of Ning (1993). Neutral detergent fibre (NDF) was analysed as outlined by Van Soest et al (1992). Amino acid (AA) contents were determined using an AA analyser (Knauer, Germany).
In vitro gas production studies
The GP was measured using the technique of Menke et al (1979), and Menke and Steingass (1988), with calibrated glass syringes (Model Fortuna, Häberle Labortechnik, Lonsee-Ettlenschie, Germany) of 32 mm internal diameter and 100 ml volume. Samples for GP determination were ground with a hammer mill to pass a 1 mm screen. About 200 mg DM of sample was introduced into a syringe with rumen liquor collected from two rumen-fistulated Huzhou sheep, that were fed on an ammoniated rice straw (ARS) diet (75% ARS, 5% Rape seed meal and 25% concentrate mixture) at 1.3 times maintenance. Following the introduction of the sample in the syringe pre-warmed to 39ºC, 30 ml of the rumen liquor and buffer solution were added, and the syringes were placed in a water bath at 39ºC. The GP was then recorded after 2, 4, 6, 9, 12, 24, 36, 48, 72 and 96 h incubation.
The GP data were then fitted to the equation GP=a+b(1-e-ct) (Ørskov 1985), where a, b and c are constants and GP is the gas production from the substrate at time t.
Statistical analysis
Results for spring and autumn mulberry leaves were analysed according to a 3 x 4 factorial design.  The difference of means was tested using Duncan's new multiple range test (Steel and Torrie 1980).
Results and Discussion
The chemical composition and content of AA are shown in Table 1 and Figure 1 for the mulberry leaves in spring, and Table 2 and Figure 2 for those in autumn, respectively.
Table 1.  Chemical composition and amino acid content of mulberry leaves in spring
 
Mulberry strains#
Sampling time## 
 THHSTXNSSESMSLSEM
Composition, %    
DM,%24.424.123.723.625.125.226.60.10
CP, % DM21.620.920.920.821.1ab21.9a20.0b0.17
TP, % CP86.789.688.388.587.590.486.31.16
NDF, % DM39.537.539.738.534.6c38.9b42.9a0.59
Amino acid concentration, g/100 g protein    
Lysine
5.3
5.02
5.05
5.21
5.16
5.14
5.13
0.13
Methionine
1.78
1.58
1.89
2.03
1.39
1.87
2.28
0.21
Phenylalanine
4.34
4.83
5.15
4.38
4.53
4.58
4.87
0.14
Leucine
6.89
7.19
7.45
7
7.17
7.43
6.77
0.27
Isoleucine
4.74
3.99
4.29
4.29
4.04
4.53
4.18
0.15
Threonine
4.25 a
3.79 b
3.98 b
3.69 b
3.95 a
3.97 a
3.86 b
0.08
Histidine
3.56
2.22
3.32
2.86
2.78
3.27
2.86
0.2
EAA
30.86
28.62
31.13
29.46
29.02
30.79
29.95
*
Valine
5.16
5.12
4.9
4.52
4.62
4.81
5.4
0.16
Arginine
4.52
4.19
4.59
4.24
4.66 a
4.20 b
4.29 b
0.14
Asparanin
8.26
8.08
7.76
7.19
7.53
8.18
7.78
0.25
Glutamine
11.46
10.1
9.13
9.22
10.31
9.39
10.32
0.63
Serine
4.2
3.55
3.27
3.18
3.32
3.27
2.86
0.25
Glycine
5.94 a
5.32 b
5.51 b
4.93 b
5.38
5.28
5.66
0.14
Ala+Tyr
11.42
10.83
11.79
10.74
10.72
11.21
11.69
0.29
Non-EAA
50.96
47.19
46.95
44.02
46.54
46.34
48
Total AA
81.82
75.81
77.63
73.48
75.56
77.13
77.95
EAA/NEAA, %
61
61
66
67
62
66
62
# TH - Tuantou Heyebai; HS - Husang No.9; TX - Tongxiangqing; NS - Nongsang No.8
## Sampling time: SE - 28 April, SM - 14 May, and SL - 29 May 1998.
### DM: dry matter; CP: crude protein; TP: true protein; NDF: neutral detergent fibrea,b,c Means with different superscripts within mulberry strains or sampling times differ (P<0 .05="" em="">

Table 2.  Chemical composition and amino acid content of mulberry leaves in autumn
 
Mulberry strains#
Sampling time## 
 THHSTXNSAEAMALSEM
Chemical composition, %     
DM (%)30.429.729.629.825.9c29.9b33.8a0.42
CP (% DM)
21.9
20.3
19.6
21.7
22.3a
21.4a
18.9b B
0.23
TP (% f CP)
84.4
86.4
87.5
84.9
86.9
85.7
84.7
0.57
NDF (% DM)
38.9 b
40.8 ab
42.6 a
43.4 a
36.7 c
40.4b
47.2a
0.46
Amino acid content,  % of  crude protein

Lysine
5.3
5.02
5.05
5.21
5.16
5.14
5.13
0.13
Methionine
1.78
1.58
1.89
2.03
1.39
1.87
2.28
0.21
Phenylalanine
4.34
4.83
5.15
4.38
4.53
4.58
4.87
0.14
Leucine
6.89
7.19
7.45
7
7.17
7.43
6.77
0.27
Isoleucine
4.74
3.99
4.29
4.29
4.04
4.53
4.18
0.15
Threonine
4.25 a
3.79 b
3.98 b
3.69 b
3.95 a
3.97 a
3.86 b
0.08
Histidine
3.56
2.22
3.32
2.86
2.78
3.27
2.86
0.2
EAA
30.86
28.62
31.13
29.46
29.02
30.79
29.95
*
Valine
5.16
5.12
4.9
4.52
4.62
4.81
5.4
0.16
Arginine
4.52
4.19
4.59
4.24
4.66 a
4.20 b
4.29 b
0.14
Asparanin
8.26
8.08
7.76
7.19
7.53
8.18
7.78
0.25
Glutamine
11.46
10.1
9.13
9.22
10.31
9.39
10.32
0.63
Serine
4.2
3.55
3.27
3.18
3.32
3.27
2.86
0.25
Glycine
5.94 a
5.32 b
5.51 b
4.93 b
5.38
5.28
5.66
0.14
Ala+Tyr
11.42
10.83
11.79
10.74
10.72
11.21
11.69
0.29
Non-EAA
50.96
47.19
46.95
44.02
46.54
46.34
48
Total AA
81.82
75.81
77.63
73.48
75.56
77.13
77.95
EAA/NEAA, %
61
61
66
67
62
66
62
# TH - Tuantou Heyebai; HS - Husang No.9; TX - Tongxiangqing; NS - Nongsang No.8
## Sampling time: AE - 28 August, AM - 30 September, and AL - 30 October 1998.
### DM: dry matter; CP: crude protein; TP: true protein; NDF: neutral detergent fibrea,b,c Means with different superscripts within mulberry strains or sampling times differ (P<0 .05="" em="">

 Regardless of the seasons, there were no differences (P>0.05) in content of CP and TP among the different strains. Little seasonal differences were found in content of CP and TP. Average CP content was 21.1 and 20.9 (% of DM), and the TP accounted for 88.2 and 85.8% of the CP in spring and autumn, respectively. The CP content in both seasons was higher than those cited in the Tropical Feed Database (FAO 1998). The NDF was higher for strain TX at middle stage of maturity, and higher for TH at late stage in spring. Strain NS had a higher NDF content at all three stages in autumn leaves (Figure 2). No significant differences were found in the NDF content between different strains, with the exception that in autumn strain TH had lower NDF content (P<0 .05="" 1994="" 1998="" alfalfa="" and="" as="" autumn="" chemical="" comparable="" composition="" content="" dm="" fao="" for="" forages="" in="" is="" leaves="" leguminous="" leucaena="" lower="" mith="" mulberry="" ndf="" ns.="" of="" p="" spring="" such="" than="" the="" those="" trees="" tx="" was="" with="">Except for higher contents of threonine and glycine (P<0 .05="" autumn="" difference="" in="" no="" other="" sampled="" strains="" th="" than="" those="">0.05) was observed in AA contents among the four strains (Tables 1 and 2). There were little differences in total, essential or non-essential AA among four strains. Total and essential amino acids were 70.0 to 81.6 and 24.7 to 31.6% of the CP for spring leaves, and 75.6 to 78.0 and 29.0 to 30.8% of the CP for autumn leaves, respectively.
The chemical composition of the mulberry leaves was influenced by stage of maturity, though the extent to which this was affected was different between spring and autumn leaves. While there was little difference in DM content of spring leaves between different stages of maturity (Table 1), DM content significantly increased with the maturity of mulberry tree in autumn (Table 2, P<0 .01="" 1="" aa="" and="" at="" autumn="" average="" content="" contents="" cp="" decreased="" differences="" early="" essential="" for="" higher="" igure="" increase="" increased="" individual="" late="" leaves="" maturity.="" maturity="" mid="" ndf="" non-essential="" not="" of="" or="" p="" regardless="" season.="" significant.="" significantly="" slightly="" spring="" stage="" tended="" than="" the="" those="" though="" to="" total="" tp="" were="" whereas="" with="">The GP of mulberry leaves sampled in both season is presented in Figure 3. All the spring leaves had higher nutritional values than the autumn leaves. Mulberry leaves sampled at mid season tended to have a higher GP (P<0 .05="" 15="" 30="" about="" and="" at="" autumn="" between="" cause="" days="" difference="" different="" early="" for="" gp="" in="" interval="" late="" leaves="" little="" lower="" mid="" middle="" might="" nutritive="" or="" p="" respectively.="" sampling="" seasons.="" spring="" stage.="" stage="" stages="" than="" that="" the="" this="" those="" two="" value="" was="" while="" with="">
The parameters of GP for spring and autumn leaves are shown in Tables 3 and 4, respectively. Potential GPs were 43.3 to 52.2 and 35.4 to 38.7 ml for spring and autumn leaves. The organic matter digestibility (OMD) may be estimated by the equation of Menke et al (1979):

OMD (%)=0.76*GP24 + 0.6365*CP + 22.5, where GP24 (ml) and CP (%) is the GP at 24 hr incubation and CP content, respectively.
Table 3. Parameters of in vitro gas production (GP) and estimated organic matter digestibility (OMD) for mulberry leaves with four strains at three different stages in spring
Mulberry strains #
Sampling time ##
SE
TH
HS
TX
NS
SE
SM
SL
GP at 24 h (ml)41.9 ab43.1 ab39.6 b47.6 a43.7 ab46.9 a38.5 b
0.94
Potential GP (ml)45.7 ab47.4 ab43.9 b52.7 a47.8 ab52.2 a43.3 b
1.04
Rate of GP (% h-1)
7.26
9.02
8.9
9.5
9.70 a
8.79 b
9.25 ab
0.11
OMD (%)69.1 ab68.8 ab65.9 b71.9 a69.2 ab71.3 a65.6 b
0.74
# TH - Tuantou Heyebai; HS - Husang No.9; TX - Tongxiangqing; NS - Nongsang No.8
## Sampling time: SE - 28 April, SM - 14 May, and SL - 29 May 1998.
,a,b Means with different superscripts within mulberry strains or sampling times differ (P<0 .05="" em="">
Table 4. Parameters of in vitro gas production (GP) and estimated organic matter digestibility (OMD) for mulberry leaves with four strains at three different stages in autumn
 
Mulberry strains #
Sampling time ##
SE
 
TH
HS
TX
NS
AE
AM
AL
GP at 24 h (ml)
31
30.8
30.8
31.3
32.5 a
31.7 ab
28.7 b
0.55
Potential GP (ml)
37.8
38
36.7
37.4
38.7
38.3
35.4
0.6
Rate of GP (% h-1)
6.57 ab
6.16 b
7.01 a
6.95 a
7.15a
6.69ab
6.18b
0.11
OMD (%)
60
58.8
58.4
60.1
61.4 a
60.3 ab
56.3 b
0.47
# TH - Tuantou Heyebai; HS - Husang No.9; TX - Tongxiangqing; NS - Nongsang No.8
## Sampling time: AE - 28 August, AM - 30 September, and 
AL - 30 October 1998.
,a,b Means with different superscripts within mulberry strains or sampling times differ (P<0 .05="" em="">
The estimated OMD was 65.6 to 71.3% and 56.3 to 61.4% for spring and autumn leaves, respectively (Tables 3 and 4). In spring leaves, Nongsang No.8 strain had higher nutritive value (P<0 .05="" and="" autumn="" between="" difference="" different="" for="" gp.="" gp24="" gp="" higher="" hs.="" in="" leaves="" little="" ns="" of="" p="" potential="" rate="" slightly="" strains="" th="" than="" that="" the="" there="" though="" tx="" values="" was="" with="">Figure 4 compares the potential GP and estimated OMD for spring leaves with those for autumn leaves. Both parameters were higher in spring leaves than in autumn, indicating that the nutritional value of spring leaves is superior to that in autumn. In order that mulberry leaves can grow for use in silkworm cultivation in autumn, the twigs of mulberry trees must be cut and modified in late May or early June. These twigs and leaves may be dried and stored for winter use.
In summary, mulberry leaves collected at different stages in both spring and autumn had a high nutritional value in term of chemical composition and in vitro gas production. There was little difference in crude protein content between spring and autumn leaves, but the spring leaves were of higher nutritional value than those in autumn with lower fibre content and higher in vitro gas production (digestibility). Mulberry leaves may thus be used as a supplementary protein source in straw diets for ruminants.

Acknowledgements

This work was funded by the International Foundation for Science (Grant Agreement No: B/2720-1). The authors express their sincere gratitude to Dr.T R Preston for his advice and suggestions, to Dr.C.F.Lou for his permission to sample the mulberry leaves from his experimental trees, and to Ms.Jinmei Zhou for her assistance in sampling of the mulberry leaves.

References

AOAC 1990. Official Methods of Analysis, 15th edn. Association of Official Analytical Chemists,  Volume 1. Washington,DC, 69-90
Dolberg F  and P Finlayson 1995 Treated straw for beef production in China. World Animal Review, No.82, 101.
Guo T S and Yang Z H  1998 New developments in livestock system based on crop residues in China. In: 2nd FAO Electronic Conference on Tropical Feeds - Livestock Feed Resources within the Integrated Farming Systems, 09 September 1997- 18 February 1998, FAO, Rome (http://www.fao.org/WAICENT/FAOINFO/AGRICULT/AGA/AGAP/FRG/conf96.htm/guo.htm)
FAO 1998. Tropical Feeds, 8th Edition. FAO, Rome. (http://www.fao.org/WAICENT/FAOINFO/AGRICULT/AGA/AGAP/FRG/TFEED8/index.htm)
Leng R A  1997 Tree foliage in ruminant nutrition. FAO Animal Production and Health Paper 139. FAO, Rome
(http://www.fao.org/WAICENT/FAOINFO/AGRICULT/AGA/AGAP/FRG/Aph139/aph139.htm)

Liu J X 1995  Supplementation of low quality crop residues In: Agricultural Science for Biodiversity and Sustainability in Developing Countries (Editors: Dolberg F and Petersen P E). Proceeding of a workshop held in Tune Landboskole, Denmark. April 1995. 165-180.
Menke K H, Raab L,.Saiewski A, Steingass H, Fritz D and Schneider W 1979 The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal Agricultural Science (Cambridge), 93:217-222.
Menke K H and Steingass H  1988 Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen liquid. Animal Research and Development, 28:7-55.
Ning K G 1993 Practical Manual of Feeds Analysis, China Agricultural Science and Technology Press, Beijing. 52
Ørskov E R 1985  Evaluation of crop residues and agro-industrial by-products using nylon bag method. In: Better Utilization of Crop Residues and By-products in Animal Feedings: research Guidelines. 1. State of Knowledge. 153-162. FAO Animal Production and Health Paper 50/1. FAO, Rome
Preston T R 1995  Tropical animal feeding, a manual for research workers. FAO Animal Production and Health Paper No.126. FAO-Rome.
http://www.fao.org/WAICENT/FAOINFO/AGRICULT/AGA/AGAP/FRG/AHPP126/ahpp126.htm)

Smith O B 1994 Using fodder from trees and shrubs to feed livestock in the tropics. 23. Better Farming Series 42. FAO, Rome
Steel R D G and Torrie J H 1980 Principles and Procedures of Statistics. McGraw-Hill: New York, 137-191, 236-372.
Van Soest P J, Robertson J B and Lewis B A 1991 Methods for dietary fibre, neutral detergent fibre, and nonstarch polysaccharides in relation to animal nutrition. Journal Dairy Science 74:3583-3597.

Received 9 March 2000